
In this first part of our conversation (here's the second part), Wolfgang and I discuss the state of theoretical and computational neuroscience, and how experimental results in neuroscience should guide theories and models to understand and explain how brains compute. We also discuss brain-machine interfaces, neuromorphics, and more. In the next part (here), we discuss principles of brain processing to inform and constrain theories of computations, and we briefly talk about some of his most recent work making spiking neural networks that incorporate some of these brain processing principles.
[et_pb_section fb_built=”1″ admin_label=”Header” _builder_version=”4.9.2″ background_color=”#ad876d” background_enable_image=”off” parallax=”on” custom_padding=”0vw||0vw||true|false” custom_css_main_element=”.podcast .entry-title {||display: none;||}” background_size__hover=”cover” background_size__hover_enabled=”cover”][et_pb_row _builder_version=”4.9.2″ background_color=”#d5a570″ use_background_color_gradient=”on” background_color_gradient_start=”rgba(26,24,68,0)” background_color_gradient_end=”#231f20″ background_color_gradient_overlays_image=”on” background_enable_image=”off” background_position=”top_center” width=”100%” max_width=”100%”...
Support the show to get full episodes and join the Discord community. Check out my free video series about what's missing in AI and...
Mazviita and I discuss the growing divide between prediction and understanding as neuroscience models and deep learning networks become bigger and more complex. She...